Correction: Formation of a Polarised Primitive Endoderm Layer in Embryoid Bodies Requires Fgfr/Erk Signalling

نویسندگان

  • Gail Doughton
  • Jun Wei
  • Nicolas Tapon
  • Melanie J. Welham
  • Andrew D. Chalmers
چکیده

The primitive endoderm arises from the inner cell mass during mammalian pre-implantation development. It faces the blastocoel cavity and later gives rise to the extraembryonic parietal and visceral endoderm. Here, we investigate a key step in primitive endoderm development, the acquisition of apico-basolateral polarity and epithelial characteristics by the non-epithelial inner cell mass cells. Embryoid bodies, formed from mouse embryonic stem cells, were used as a model to study this transition. The outer cells of these embryoid bodies were found to gradually acquire the hallmarks of polarised epithelial cells and express markers of primitive endoderm cell fate. Fgf receptor/Erk signalling is known to be required for specification of the primitive endoderm, but its role in polarisation of this tissue is less well understood. To investigate the function of this pathway in the primitive endoderm, embryoid bodies were cultured in the presence of a small molecule inhibitor of Mek. This inhibitor caused a loss of expression of markers of primitive endoderm cell fate and maintenance of the pluripotency marker Nanog. In addition, a mislocalisation of apico-basolateral markers and disruption of the epithelial barrier, which normally blocks free diffusion across the epithelial cell layer, occurred. Two inhibitors of the Fgf receptor elicited similar phenotypes, suggesting that Fgf receptor signalling promotes Erk-mediated polarisation. This data shows that primitive endoderm cells of the outer layer of embryoid bodies gradually polarise, and formation of a polarised primitive endoderm layer requires the Fgf receptor/Erk signalling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation.

When embryonic stem cells are allowed to aggregate, the outer layer of the aggregated spheres (referred to as embryoid bodies) differentiates into primitive endoderm. This initial specification of cell lineage facilitates further differentiation of the inner mass of the embryoid bodies. These processes are considered to recapitulate early embryonic development from the blastocyst stage to the e...

متن کامل

Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm.

During mouse embryogenesis the first hematopoietic and endothelial cells form in blood islands located between layers of visceral endoderm and mesoderm in the yolk sac. The role of visceral endoderm in primitive hematopoiesis and vasculogenesis is not well understood. We have assessed the consequences of a lack of visceral endoderm on blood cell and vessel formation using embryoid bodies derive...

متن کامل

A System to Enrich for Primitive Streak-Derivatives, Definitive Endoderm and Mesoderm, from Pluripotent Cells in Culture

Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differen...

متن کامل

The mevalonate pathway regulates primitive streak formation via protein farnesylation

The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalo...

متن کامل

Induction of yolk sac endoderm in GATA-4-deficient embryoid bodies by retinoic acid

GATA-4, a transcription factor implicated in lineage determination, is expressed in both parietal and visceral endoderm of the early mouse embryo. In embryonic stem cell-derived embryoid bodies, GATA-4 mRNA is first detectable at 4-5 days of differentiation and is confined to visceral endoderm cells on the surface of the bodies. Previously we reported that targeted mutagenesis of the Gata4 gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014